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A generalization of the previously proposed non-iterative matrix method (NIMM)
for constraint molecular dynamics simulations is presented. The resultant generalized
version of NIMM (gNIMM) makes possible the constraint force calculation with
exactly the same procedure (subroutine) for various “Verlet equivalent” integration
schemes with the same fourth order of the time step as the constraint error order.
This gNIMM needs only the latest available configuration information and does not
need extra memory and restart file size to store the one-step earlier configuration as
in a previous extension of NIMM by J. Slusher and P. Cummings (1996,Mol. Sim.
18, 213). The method is tested by simulations with systems of fullerenes, a protein,
etc., and is three to five times faster than SHAKE for solving the constraints even in
such rather large molecule simulations.c© 2001 Academic Press
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1. INTRODUCTION

Constraint dynamics places constraints on some intramolecular degrees of freedom, thus
allowing integration time steps larger than those possible in ordinary dynamics. Since the
introduction of the algorithm SHAKE [1] in the late 1970s, constraint dynamics simulations
have been done by mostly applying this SHAKE algorithm. Although application of SHAKE
is generally successful, efforts have been made to improve the constraint algorithm in its
computational efficiency and parallelization. Some examples are the EEM method based
on Gauss’s principle of least constraint proposed by Edberget al. [2]; LINCS [3], which is
similar to the EEM, but solves the same non-linear constraint problem as SHAKE instead
of derivatives of the constraint as in the EEM; and NIMM (non-iterative matrix method)
by Yoneyaet al. [4]. NIMM was recently extended by Slusher and Cummings [5] from its
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original combinations with Verlet and leap-frog to combinations with velocity Verlet and
Beeman time integration schemes.

In this article, we present a more generalized extension of NIMM for so-called “Verlet
equivalent” time integration schemes. We evaluate its computational efficiency and ro-
bustness compared to SHAKE with test simulations of fullerenes, a protein, rigid planar
benzenes, etc.

2. CONSTRAINT ALGORITHMS

In this section, we show the basic idea of NIMM in comparison with SHAKE. We discuss
only the bond length constraint because the other constraints, e.g., bond angle, are formally
the same as that of bond length.

2.1. Constraint with SHAKE

Let us assume there areN bonds in a molecule.xi , x j are the coordinates of two atoms
which form thenth bond of this molecule anddn is its fixed bond length. The total constraint
condition of a molecule can be expressed as

χn(t) ≡ r2
n(t)− d2

n = 0 (n = 1− N),

where

rn(t) ≡ xi (t)− x j (t).

In SHAKE, the atomic coordinates are iteratively reset to fulfill the following equation as
a result:

χn(t +1t)+ O(ε) = 0. (1)

The point of SHAKE is that the constraint force is calculated to fulfill the constraint condition
(with user-specified error toleranceε) at not the current, but the next time stept +1t . It
is known, that the time integration with constraint force which is calculated to fulfill the
constraint condition at the current time step results in large drifts of constrained bond
lengths [1]. This is because the time integration scheme itself has a limited accuracy and the
accumulation of integration error causes the drifts. SHAKE effectively suppresses this drift
by the point above. The method proposed by Edberget al.[2] has no such error suppressing
function itself and then it needs an independent error handler.

The constraint forcef c
i is expressed as follows using the Lagrange multiplierλn:

f c
i (t) =

1

2

N∑
n=1

λn(t)∇ri (t)χn(t) =
N∑

n=1

λn(t)r i (t). (2)

Equation (2) means that the calculation of constraint force is equivalent to the calculation
of the Lagrange multipliers. If we use this constraint force equation (2) in the constraint
condition (1), it results in a non-linear (quadratic) equation aboutλn and then, needs an
iterative procedure to solveλn. This is the reason why SHAKE becomes an iterative method.
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2.2. NIMM and Its Extension

NIMM is a constraint algorithm which can only be combined with (up to) fourth error
order time integration schemes, e.g., various “Verlet equivalent” time integration schemes.

The difference between NIMM and SHAKE is the equation which is solved in SHAKE
(Eq. (1)) and the equation which is solved in NIMM,

χn(t +1t)+ O(1t4) = 0; (3)

i.e., the difference between them is simply the specification of the constraint errors. This
means that the point which suppresses the constraint error accumulation is considered to
be the same in both SHAKE and NIMM. In SHAKE, the constraint error toleranceε is a
user-specified parameter. On the other hand, the constraint error orderO(1t4) in NIMM is
the error order of the combined time integration scheme. In constraint dynamics, these error
orders of the constraint condition and time integration are not independent as in SHAKE,
but related to each other. It is shown that the error orders of the constraint condition and time
integration should be on the same order with the simple analysis in the original presentation
of NIMM [4]. The major difference when solving Eq. (3) instead of Eq. (1) to obtain the
Lagrange multipliers is the former can be solved non-iteratively because of the quadratic
term aboutλn is omitted asO(1t4) terms, in contrast to the latter which must be solved by
the iterative procedure. This is the reason why NIMM becomes non-iterative and it must be
combined with (up to) fourth error order time integration schemes.

In the original presentation of NIMM [4], the combinations with Verlet and the leap-
frog time integration scheme were explained. Neither evaluates the atomic coordinates and
velocities at the same timing and this causes inconvenience in some applications. Slusher
and Cummings [5] extended NIMM, combining it with the velocity Verlet and Beeman time
integration scheme in which the coordinate and velocity are evaluated at the same timing.
Their actual algorithm is shown with an example of the velocity Verlet in

x(t +1t) = x(t)+ ẋ(t)1t + 1

2
ẍ(t)1t (4)

ẋ(t +1t) = ẋ(t)+ 1

2
{ẍ(t)+ ẍ(t +1t)}1t2. (5)

Slusher and Cummings proposed the following procedure which evaluatesχn(t + 21t)
with an equation obtained by substituting Eq. (5) into Eq. (4) and shifting one time step1t :

χn(t + 21t)+ O(1t4) = {rn(t +1t)+ ṙn(t)1t}2− d2
n + {rn(t +1t)

+ ṙn(t)1t} · {r̈n(t)+ 2 r̈n(t +1t)}1t2 = 0. (6)

Equation (6) utilizes one time step earlier valuesṙn(t), r̈n(t) which are usually not avail-
able at the timing of the constraint force evaluation because these are overwritten with
the corresponding latest values. As a result, we need extra memory area for these earlier
step values to calculate the constraint force using Eq. (6). On the other hand, the original
NIMM for the leap-frog only utilizes the latest available valuesrn(t), ṙn(t −1t), r̈nc

n (t) at
the timing of the constraint force evaluation. Analogously, when we restart the constraint
dynamics run from the previous configuration which is stored in a restart file, the file with
the same contents as the non-constraint run, i.e.,x(t), ẋ(t −1t) is enough in the original



NON-ITERATIVE MOLECULAR DYNAMICS SIMULATIONS 191

NIMM, whereas the file should additionally contain the one step earlier values in the case of
Eq. (6).

3. GENERALIZED NIMM

3.1. Alternative Extension of NIMM

As in the previous section, the NIMM extension for the velocity Verlet by Slusher and
Cummings needs extra memory and restart file size, which the original NIMM for the leap-
frog does not. This problem can be solved with an alternative extension based on systematic
generalization of NIMM in the following.

Let us begin with that the “Verlet equivalent” schemes are derived from the original Verlet
scheme with the velocity definitions [6]

ẋ(t + (α − 1/2)1t) ≡ x(t + α1t)− x(t + (α − 1)1t)

1t
. (7)

The corresponding rewritten Verlet form is

ẋ(t + (α − 1/2)1t) = ẋ(t + (α − 3/2)1t)+ ẍ(t + (α − 1)1t)1t + O(1t3). (8)

The casesα = 1, 3/2, and 2 correspond to the leap-frog, the position Verlet [8], and the
velocity Verlet integration scheme, respectively. From these equations, we get

x(t + α1t) = x(t + (α − 1)1t)+ ẋ(t + (α − 3/2)1t)1t

+ ẍ(t + (α − 1)1t)1t2+ O(1t4).

This means the error order of the coordinate integration is the same as that of original Verlet,
i.e., O(1t4). We will show the corresponding NIMM formulation in the following.

First, the velocity Verlet procedures for two time steps are listed in a different form with
Eqs. (4), (5) as follows:

ẋ(t +1t/2) = ẋ(t)+ ẍ(t)(1t/2)

x(t +1t) = x(t)+ ẋ(t +1t/2)1t

ẋ(t +1t) = ẋ(t +1t/2)+ ẍ(t +1t)(1t/2)

ẋ(t + (3/2)1t) = ẋ(t +1t)+ ẍ(t +1t)(1t/2)

x(t + 21t) = x(t +1t)+ ẋ(t + (3/2)1t)1t

ẋ(t + 21t) = ẋ(t + (3/2)1t)+ ẍ(t + (3/2)1t)(1t/2).

By substituting the first equation of the second step into the last equation of the first step,
we obtain the following:

ẋ(t + (3/2)1t) = ẋ(t +1t/2)+ ẍ(t +1t)1t (+O(1t3)).

This is Eq. (8) withα = 2 and Eq. (7) withα = 2 corresponds the second equation of the
second step. Substituting the above into this second equation of the second step gives

x(t + 21t) = x(t +1t)+ ẋ(t +1t/2)1t + ẍ(t +1t)1t2 (+O(1t4)).
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Evaluatingχn(t + 21t) with this equation makes the constraint condition fort + 21t

χn(t + 21t)+ O(1t4) = q2
n(t +1t)− d2

n + 2qn(t +1t) · r̈(t +1t)1t2 = 0, (9)

whereqn(t +1t) is defined as

qn(t +1t) ≡ rn(t +1t)+ ṙn(t +1t/2)1t.

Equation (9) utilizes only the latest available values at the timing of the constraint force
evaluation (between the second and the third equations of the first time step), and does not
require the one step earlier values as in Eq. (6).

Next, the restart file size is discussed. Usually, the restart file contains atomic coordinates
and velocities and these are actuallyx(t +1t) and ẋ(t +1t) in the case of the two-
step expression of the velocity Verlet above. In this case, at the first step after restart,
ẋ(t + (3/2)1t) cannot be calculated due to a lack ofẍ(t +1t) which includes constraint
force. To solve it, the values contained in the restart file should be the latest values which
can be calculated at the last time step. In the case of the velocity Verlet,x(t +1t) and
ẋ(t + (3/2)1t) should be stored as a restart file and a continuous run becomes possible
using such a restart file without extra restart file size.

3.2. Generalization of NIMM

In the previous section, the NIMM was extended to the combinations with the velocity
Verlet. Extension to the combinations with the position Verlet is also possible in a similar
manner. We found that the equations to obtain the constraint force take the general form

χn(t + α1t)+ O(1t4) = q2
n(t + (α − 1)1t)− d2

n

+ 2qn(t + (α − 1)1t) · r̈(t + (α − 1)1t)1t2 = 0 (10)

qn(t + (α − 1)1t) ≡ rn(t + (α − 1)1t)+ ṙn(t + (α − 3/2)1t)1t,

where

α = 1 for Verlet usinġrn(t −1t/2)1t = rn(t)− rn(t −1t)

= 1 for leap− frog

= 3/2 for position Verlet

= 2 for velocity Verlet.

This means exactly the same subroutine (to solve Eq. (10)) can be used to calculate constraint
force for all these “Verlet equivalent” time integration schemes (withO(1t4) constraint
error order). Corresponding constraint force is obtained by Eq. (2) as follows:

f c
i (t + (α − 1)1t) = 1

2

N∑
n=1

λn(t + (α − 1)1t)∇ri (t+(α−1)1t)χn(t + (α − 1)1t)

=
N∑

n=1

λn(t + (α − 1)1t)rn(t + (α − 1)1t). (11)
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Here, the Lagrange multiplierλn(t + (α − 1)1t) is actually obtained by Eq. (10), i.e.,
not χn(t + (α − 1)1t)+ O(1t4) = 0 but χn(t + α1t)+ O(1t4) = 0, and then can be
considered asλ′n(t + α1t). Corresponding to this, if we evaluateχn in Eq. (11) with
Eq. (10), we get

f c
i (t + (α − 1)1t) = 1

2

N∑
n=1

λ′n(t + α1t)
∂qi

∂r i
∇qi (t+(α−1)1t)χn(t + α1t)

=
N∑

n=1

λ′n(t + α1t){qn(t + (α − 1)1t)+ r̈(t + (α − 1)1t)1t2}.

(12)

Here, thër(t + (α − 1)1t)1t2 term of the above equation is omitted asO(1t4) term in
the calculation of the Lagrange multipliers with Eq. (10). In the combination of Eqs. (12)
and (10), the matrix to solve the Lagrange multipliers becomes symmetric, whereas the
corresponding matrix is asymmetric if we combinate Eqs. (11) and (10). Symmetric matrix
solvers are generally faster than asymmetric ones and for this reason, the former combination
is practically preferable in gNIMM.

4. TEST SIMULATION RESULTS

4.1. Error Orders

In the previous section, NIMM was generalized to various “Verlet equivalent” time
integration schemes. In this section, we checked this generalized NIMM (gNIMM) with
simple test simulations. The tested system was a 32n-butane molecule (only bond constraint
was applied) system under a periodic boundary condition which is the same as in the test
of the original NIMM paper. Figure 1 shows the dependency of R.M.S. constraint error
(〈χ2

n 〉1/2 evaluated with Eq. (10) and〈 〉 stands for average over bonds and time steps) on
time integration step1t for various “Verlet equivalent” schemes with the same subroutine
(results of the original NIMM are also shown).

The constraint errors are the value at the timing of the constraint force calculations of
each integration scheme, e.g.,χ(t +1t) for the leap-frog,χ(t + (3/2)1t) for the position
Verlet. The gNIMM constraint errors of all these “Verlet equivalent” integration scheme are
indistinguishable and allO(1t4).

4.2. Timing Results

Then, to compare NIMM with SHAKE in its computational efficiency, we did test sim-
ulations of various molecular systems.

The first one was a system of 64 liquid crystal 5CB (4-n-pentyl-4′-cyanobiphenyl)
molecules [9] (total: 1216 atoms including united atoms) under a periodic boundary con-
dition at isotropic states. A time step of 2fs was used in a total of 200 steps of constant
energy simulations with bond length constraint. The timing results were obtained by Hewlett
Packard HP9000/735 workstation and they are summarized in Table 1 with the correspond-
ing R.M.S. constraint errors.

In the constraint force calculation part, the CPU time of gNIMM is almost the same as that
of NIMM and about five times faster than SHAKE (note that the current implementation
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FIG. 1. Constraint error dependency on time step size.

of these constraint routines is not extensively tuned). In these test simulations, R.M.S.
constraint errors and energy fluctuations are the same order of magnitude for all methods.
The CPU times of gNIMM with different time integration schemes are negligibly different
because all were calculated with exactly the same subroutines.

The extended run (with gNIMM and leap-frog) up to 50,000 time steps on this 5CB system
was done to check the long-term stability. In Fig. 2, we plot the instantaneous fluctuations
of the energy about the initial value, i.e.,1E(t)/E(0) = (E(t)− E(0))/E(0) [8], with the
corresponding result with SHAKE. The total energy was conserved with 0.5% fluctuation
and R.M.S. constraint errors were stably kept on the order of 10−5 Å.

TABLE 1

CPU Seconds for the 5CB System (200 Steps)

Const. Integration Const. Total Const. error
method method CPU CPU 〈χ2

n 〉1/2

SHAKE leap-frog 7.38 67.9 3.5× 10−5

NIMM leap-frog 1.20 63.7 2.5× 10−5

gNIMM leap-frog 1.41 62.8 2.0× 10−5

gNIMM pos. Verlet 1.38 66.0 1.8× 10−5

gNIMM vel. Verlet 1.43 63.0 2.5× 10−5
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FIG. 2. Instantaneous fluctuations of the energy for gNIMM/leap-frog (black line) and SHAKE (gray line).

Next, we run a test with a rather large molecular system, e.g., the 32-fullerene C60
molecules [10], under a periodic boundary condition and a protein BPTI (Bovine Pancreatic
Trypsin Inhibitor [11]) in vacuo.The time step of 2fs was used and only bond lengths
were constrained in both C60 and BPTI molecules, but C60 actually became rigid with this
constraint. Corresponding timing results (only the case with leap-frog) are listed in Tables 2,
and 3, respectively.

As in the tables above, gNIMM (again almost the same as NIMM) is 4.5 and 3.2 times
faster than SHAKE (with the same level of constraint errors) in the C60 and BPTI systems,
respectively. It has been reported that NIMM is eight times faster than SHAKE with a
water molecule system [12], so the computational efficiency of NIMM/gNIMM relative to
SHAKE might be higher in smaller molecules. However, NIMM/gNIMM is proved to be
faster than SHAKE even with rather large molecular systems, i.e., C60 and BPTI. Moreover,
NIMM/gNIMM can be easily accelerated by using a tuned ready-made matrix solver for a
specific machine.

We already showed (Fig. 1) that NIMM/gNIMM will work with a rather large time step
size (with sacrifice of the constraint error which is consistent with the time integration error

TABLE 2

CPU Seconds for 32 Mols. of C60 (100 Steps)

Method Const. CPU Total CPU 〈χ2
n 〉1/2

SHAKE 28.0 524 1.7× 10−5

NIMM 5.45 502 3.3× 10−7

gNIMM 6.22 503 2.8× 10−7
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TABLE 3

CPU Seconds for a BPTI (200 Steps)

Method Const. CPU Total CPU 〈χ2
n 〉1/2

SHAKE 5.30 155 8.8× 10−6

NIMM 1.40 154 5.3× 10−6

gNIMM 1.67 149 2.5× 10−6

of the atomic coordinates) with which SHAKE will not converge. To look at an another
aspect of robustness of gNIMM, we tested it with a system of 32 molecules of planar rigid
benzene. The system has been reported (Takeuchi [13]) as one in which SHAKE will fail.
Benzene is modeled with six united atoms, and all six bond lengths and three extra pseudo-
bond lengths (these equally divide the benzene hexagon into six triangles) are additionally
constrained to make benzene planar rigid. Actually, SHAKE fails within a few tens of time
steps even with a small time step of 0.04fs, whereas gNIMM did not fail after five thousand
steps (we did not check the actual limit). The gNIMM has been applied to the simulations
of various kinds of molecules (mainly liquid crystals [14]) up to more than a million time
integration steps without any numerical instability.

So far, we have stated the positive aspects of the gNIMM, but there are still subjects
for further discussion. For example, the geometric properties of time integrators have been
shown to be important in the long term stability of simulations [15]. It has been shown
that, when the iteration is carried to ideal convergence (i.e.,χn(t +1t) = 0), SHAKE in
combination with Verlet is symplectic and time reversible [16]. The non-ideal convergence
of the gNIMM (i.e.,χn(t +1t)+ O(1t4) = 0) possibly breaks this symplecticness, but
as yet this is not clear. That is one of the subjects for a future study.
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